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We study the localization of classical waves in weakly scattering two-dimensional systems with anisotropic
disorder. The analysis is based on a perturbative path-integral technique combined with a spectral filtering that
accounts for the first-order Bragg scattering only. It is shown that in the long-wavelength limit the radiation is
always localized, and the localization length is independent of the direction of propagation, the latter in
contrast to the predictions based on an anisotropic tight-binding model. For shorter wavelengths that are
comparable to the correlation scales of the disorder, the transport properties of disordered media are essentially
different in the directions along and across the correlation ellipse. There exists a frequency-dependent critical
value of the anisotropy parameter, below which waves are localized at all angles of propagation. Above this
critical value, the radiation is localized only within some angular sectors centered at the short axis of the
correlation ellipse and is extended in other directions.
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Anderson-type localization of classical waves in disor-is characterized by a finite localization length, which is in-
dered systems is a topic of increasing current interest due tdependent of the direction of propagation. For shorter wave-
its fundamental role in wave-matter interactions, and alsdengths, comparable to the correlation scale of the disorder,
due to the significance of possible applicatiphis While the  the calculations demonstrate that waves should be exponen-
localization in one-dimensionallD) random systems has tially localized within some angular sectors centered at the
been studied in considerable detail, a quantitative analyticadhort axis of the correlation ellipse, and are extended in other
description of the phenomenon in higher dimensions stilldirections. The crossover from isotropic to anisotropic media
presents a challenge. The question here concerns the relgsembles a phase transition: for any given wave number
tionship between the localization and its characterigiey, there is a frequency-dependent critical degree of anisotropy
localization length, on the one hand, and the correlation below which the localization length is finite for all angles of
properties of the scattering potential, on the other. Howeverpropagation. Above this critical value, one observes channel-
most of the existing results are related té-aorrelated po- ing of the wave energy along the physically predetermined
tential or obtained numerically by using discrete schemesgirections.
such as the tight-binding model, and therefore are relevant We consider the radiation of a point source located at the
mainly for low-frequency excitations. Moreover, the theoriesorigin in an infinite statistically homogeneous medium which
describing wave localization have been developed primarilys characterized by the relative permittivity distribution
for systems with isotropic disorder, and those considering;(R)=1+%(R). The “scattering potentialZ(R) is assumed
anisotropy [2,3] are not directly applicable to classical to be a zero-mean random perturbation with a given correla-
waves. The only exception is the limiting case of an infinitetion function B,(R), whose Fourier transformation defines
correlation scale in one directigrandomly stratified medja  the power spectrund,(K). Thus, at any poinR, the time-

which has been studied rather comprehensiyélyIn such  harmonic wave field satisfies the Helmholtz equation
media, the radiation is localized in the direction across the

layers and is typically channeled along the layers, similar to V2G(R) + k1 +%(R)]G(R) = - &(R), (1)
that occurring in a regular waveguide. Although this model
can be useful for understanding the basic mechanisms ¢vherek=2m/\ is the wave number in an unperturbed homo-
wave localization in anisotropic systems, it is of little help 9eneous medium.
when media with finite anisotropy are concerned. Experi- The objective is to find the self-averagirigonrandom
mental studies dealing with both electrofifd and classical Vvalue called inverse localization lengttyapunov expo-
wave [6,7] transport in anisotropic systems have been initi-neénd, which is defined as
ated only recently and are far from being complete. Sl gy 1

The present study is based on a path-integral appri@ch ¢ k)=~ L'Tll‘ Inl(L.k), 2
that enables a perturbative analysis of the localization length
in random media with continuous-type disorder described byvherel(L,k) =|G(R)|? is the wave intensity measured at a
an arbitrary correlation function. It is shown that in the long-distanceL = |R| from the point source, anki=kR/R is the
wavelength limit, a two-dimensioné2D) anisotropic system wave vector directed along the line connecting the source
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with the observation point. The positivenesstof(k) means Ky
that the wave intensity in typical realizations decays expo-
nentially, I(L k) ~exd-L/&Kk)], i.e., the radiation is local-
ized in thek direction. To calculate the Lyapunov exponent,
we use the following indirect procedure consisting of two
steps. We first evaluate the decrement of the mean intensity,

2k

a(k) == limL 2 In{I(L,k)), (3)
which, in general, does not coincide with the inverse local- K
ization length, because, being obtained by averaging over the
ensemble of all possible realizations of the scattering poten-
tial, it is formed mainly by the contribution of low probable
Ewald circle

realizations with high@ resonancef9]. However, by evalu-
ating the decrement(k) in the second order of the scatter-
ing potential and presenting the result in the form of an in-
tegral expansion in thE space[see Eq(6) below], we can
filter out the contribution of low probable resonances, and ) ) )
therefore estimate the inverse localization length, the second F!C: 1. Momentum diagram, representing schematically the pro-
essential step in our calculations. cess of Bragg sgatterlng in alweakly dlsordered medium. The points
To realize this program, we use the method of proper timé)f the Ewald circle determine all possible spectral components

[10], according to which the solution of EqL) is given in (vectorsk =k’ -k of the power spectrujthat could transform the
the ;‘orm incident wave(k) into a scattered onék’). The limiting circle

bounds all spectral components coupling any two wave vectors in
the process of elastic scattering.

Limiting circle

i 0
G(R) = EJ drexpik#2)g(R,7), (4)
0 analyze first the basic mechanisms determining the interac-
where functiong(R, 7) satisfies a Schrodinger-like equation, tion of the wave field with different spectral components of
_ 5 o~ the scattering potential. To this end, let us recall the well
2ikd,g+V-g+keR)gR,7)=0, 7>0, (5)  known perturbative result for the inverse localization length

supplemented by an appropriate initial conditigiR,0) N 1D systems9]:

=8(R). By applying the path-integral solution to the propa- -

gatorg(R, 7), the mean intensity of the wave is constructed £7k) = Ek2<138(2k). (8)

in the form allowing for the averaging to be easily per-

formed. Ther integrals are then evaluated by the method ofAccording to this expression, onlg¢=+2k components of

stationary phase, and the double path integral is replaceithe spectrum contribute (k) for a time-harmonic wave

with a first cumulant approximation, which in accordancewith wave numberk, which means that the localization is

with Eq. (3) yields [11] caused by the Bragg scattering on the corresponding periodic
lattice. As can be easily verified, E¢B) is reproduced ex-
a(k):Zk3def(k,K)<I> (K). (6) actly, if we keep only R Bragg components in Eq6)
2 ¢ written for the 1D case. The high-frequency t#l> 2k, of

the power spectrum does not contribute to the localization
length in weakly scattering media, but is related to the spikes
f(k,K) =K™8(K - |2k - K/K]) - K29(K — |2k - K/K]), of wave intensity and enhanced transmission in resonant re-
%) alizations[12].
It is natural to extend this algorithm to higher-dimensional
4(x) is the Diracé function, andd(x) is the Heaviside step (2D and 3D media, where, according to the macroscopic
function. It is important to note that Eq®) and(7) are valid  point of view [13], the localization appears as a result of a
for any power spectrun®(K) and have the same general subtle interplay between different periodic lattices, which
form for random systems of any dimensionality. In deriving constitute any realization of a random medium. As is known,
Eq. (6), we have assumed that the distahcis much larger in multidimensional systems the components of the power
than any correlation scale of the disorder. This does not alspectrum(vectorsK of the reciprocal latticgsthat partici-
low considering the crossover to a randomly layered mepate in the Bragg scattering and, therefore, contribute to the
dium, where one of the correlation scales is obviously infi-localization length, are located within the limiting cir¢2D)
nite. However, this model is suitable for studying theor sphere(3D) of radius X in the Ewald construction; see
transition from isotropic random media to quasilayered strucFig. 1 (in 1D, this diagram degenerates into three pokits
tures in which one of the correlation scales is much greateF 0, +2k only) [8]. Hence, to estimate the value §f'(k) in
than othefs). higher dimensions in the same way as was done in the 1D
To extract the value ot (k) from Eq. (6), we have to case, we should perform spectral filtering by reducing the

Here,
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integration domain in Eq(6) to the limiting spherekK < 2k, 0.20 = T T
which results in

£7Y(Kk) = ngJ dK f(k,K)®,(K). (9)

K=2k

&' (k)

The kernel of this integral transform, the functidtk,K)

given by Eq.(7) consists of two terms having opposite signs,
which means that in many-dimensional systems different 0.05}
spectral components of the scattering potential control in
radically different ways the propagation of wave at typical

realizations. While the localization is favored by interaction 0.00 0'1 e 1 — ---%-0
of the wave with spectral components lying on the cukve : .
=|2k -K /K|, wave scattering on lattices bounded by this Normalized wave number x

curve and the limiting circl¢see Fig. 1 suppresses localiza- o _ .
tion and can even dgestroy(éit Thu% %he ?(Fa)sult of the compe- FIG. 2. Inverse localization length~%(k) as a function of the
tition bet th t 't ib t" d th t normalized wave numbet=kl, for 2D statistically isotropic me-
tion be We?” ese two contribu !ons an. € exac' anSWelium with Gaussian correlation function. The localization length is
to the question whether the wave is localized or not is deter; .o o 1052 and is given in units of
mined ultimately by the structure of the power spectrum. ¢ “
In what follows we consider two-dimensional random -
systems. If the disorder is isotropic, the integration over an- . -1, \ _ 153 / — 22,232 + 2 2
gular coordinate in Eq9) can be performed analytical[]. ¢ (k) 8U’°"K . 0 dg'[2 expl=a,k°7) + By(@,1)
In the general case of an angle-dependent power spectrum 2 20
®,(K,¢'), Eq.(9) can be presented in the form - Ey(a,x"B)], (14)
. 1 where E;(x) is the exponential integral, and=KI, is the
IR Wksf d¢’ | . (2kB, ¢') _J dxx 1, (2kx, ¢') |, normah;ed wave nu.mbgr. . . .
0 8 The inverse localization length in an isotropic systein
(10) =1) as a function ofx is shown in Fig. 2. Althougtt (k)
has a well-defined maximum at some intermediate frequency
whereB=|cod ¢-¢')|, and¢ is the angle of propagation, so band, in the high-frequency limit the localization length is
thatk = (k, ¢). Note that the interval of integration ove¥ is ~ independent of the wavelength. The same effect has been
reduced to[0,] since B(¢'+m)=8(¢'), and the power observed recently in numerical simulatiofts4] where the

spectrum is a periodic function in polar coordinates,Iocalizaltion length for .2D strongly _disorde_req systems was
®,(K, ' +m)=D,(K, ). shown to saturate at high frequenc!es. Whlle in Red) the

© e aturation was attributed to the discontinuous character of
he permittivity distribution, our consideration shows that
his effect can be of universal nature.

For anisotropic systems, in the long wavelength limit

uk®><1, Eq.(14) takes the form

-1 — 2 31-1
where o? is the variance of the fluctuations, whilgand u €= (AL =In Ao, (19
are, respectively, the mean geometrical value and the ratio a¥hich means that ~'(k) does not depend on the angle of
the correlation lengths along the two coordinate axes. Wherropagation under specified conditions, and the wave is lo-
for instance,u> 1, the inhomogeneities are stretched alongcalized in all directions as it is in isotropic media.
they axis. Since the two situations>1 andu<1 are to- Anisotropy of the system shows up when the radiation
pologically equivalent, we consider only the cage>1, wavelength becomes comparable to the correlation scale of
which means thai is the angle measured between the shorthe disorder; see Fig. 3. While at1/4 [Fig. 3a)] radiation
axis of the correlation ellipse and the direction of waveis still localized in all directions for all values 07 used in
propagation. The power spectrum corresponding to([Et). our calculations, for shorter wavelengths, already for
is given by =1/2[Fig. 3b)], a high degree of anisotropy causes the loss
of complete localization: at some criticaldependent angle
@S(K,¢f):(1/477)g§|§exp(_ ai|§|<2/4), (12) ¢. the inverse localization length turns to zero and there
appear angular sectors centered at the long axis of the corre-
where lation ellipse, within which the wave is extended. Ror 1
[Fig. )], only weakly anisotropic medigu<2) could lo-
aiz ai(q&’):,usin2 ¢+ (Llu)cos ¢'. (13)  calize waves in all directions. For increasing valuesxpf
even a very moderate degree of anisotropy destroys complete
By substituting the latter expressions into E§0) we obtain  localization. Moreover, as can be seen from the plots corre-

To exemplify the result obtained, we have assumed th
the medium is described by an anisotropic Gaussian corre%
tion function,

B.(R) = B,(x,y) = 0% exp(—- w12 -y ul?), (11)
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FIG. 3. Inverse localization length (k) as a function of the angle of propagatigrfor 2D statistically anisotropic media, with different
values of the anisotropy parametgr=2 (dotted ling, w=4 (dash-dotted ling =8 (dashed ling x=16 (solid line). Straight dashed line
corresponds to the isotropic case. The localization length is normalize@land is given in units of,. Each of the five plots corresponds
to a given value of the normalized wave numberkl,: (a) k=1/4;(b) k=1/2;(c) k=1; (d) k=2; (€) k=4.

sponding tok=2 [Fig. 3d)] and, especiallyx=4 [Fig. 3e)], calization length can be understood if we recall that the same
the dependence of the localization length on the angle ophysical mechanism, namely, scattering on the resonant
propagation becomes more complicated: a unimodal anguld@ragg lattices, underlies not only band gap formation in pe-
structure typical of smalk values transforms into a bimodal riodic systems, but also wave localization in random media.
distribution. In other words, the maximum of the inverse There exist a number of examples, in particular, in two di-
localization length(the strongest localizatigonis observed mensions, which show a complete stop band only above
not for waves propagating in the transverse direction, i.e.some critical value of the refractive index contrast between
along the¢=0 axis, as one could expect, but at some interthe constituent dielectrics forming a photonic crystal. For
mediate angl€0< ¢ < ¢.), which depends on botk and w. smaller contrasts, the wave can freely escape the photonic
This, at first glance counterintuitive, behavior of the lo- trap, being channeled within some angular sectors defined
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by the structurg15]. Since there is a parallel between the may be absent in 2D anisotropic systems when the wave-
band-gap phenomena in photonic crystals, on the one hanténgth is comparable to the correlation scales of the disorder.
and our treatment of classical wave localization in randomq similar ana|ysis based on E() can be performed also for

media, on the other, it is of little surprise that the anisotropy3p anisotropic media. The predicted effect of anisotropy on

in correlations of the scattering potential leads to similar efy e transport in random media may find applications in

fects. Also, one can find an interesting analogy with thephotonics and other related technologies. For instance, in

angle-resolved picture of wave transport through 3D disor- .
dered photonic crystals, where at some frequencies a bl! any cases the degree of anisotropy can be controlled much
’ grore easily than the refractive index contrgkt]. The de-

modal angular distribution of the radiation has been observe o :
[16]. pendence of ~"1(k) on the anisotropy opens, therefore, a way

In summary, the localization of classical waves in 2D ran-to control localization in disordered systems. In particular,
dom media with anisotropic disorder has been considerediuch effects may be used in random laggi§ where the
The physical analysis is based on a formula that generalizgsossibility of changing the shape of lasing modes and, hence,
the well known 1D Bragg scheme to multidimensional sys-their quality factor and lasing threshold, adds considerably to
tems. It is shown that, in contrast to the low-frequency re-the technique.
gime where the radiation is localized in all directions, for
shorter wavelengths wave transport becomes highly aniso- This work was supported by the Israeli Science Founda-
tropic. The important prediction is that complete localizationtion (Grant No. 328/0
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