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We study the localization of classical waves in weakly scattering two-dimensional systems with anisotropic
disorder. The analysis is based on a perturbative path-integral technique combined with a spectral filtering that
accounts for the first-order Bragg scattering only. It is shown that in the long-wavelength limit the radiation is
always localized, and the localization length is independent of the direction of propagation, the latter in
contrast to the predictions based on an anisotropic tight-binding model. For shorter wavelengths that are
comparable to the correlation scales of the disorder, the transport properties of disordered media are essentially
different in the directions along and across the correlation ellipse. There exists a frequency-dependent critical
value of the anisotropy parameter, below which waves are localized at all angles of propagation. Above this
critical value, the radiation is localized only within some angular sectors centered at the short axis of the
correlation ellipse and is extended in other directions.
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Anderson-type localization of classical waves in disor-
dered systems is a topic of increasing current interest due to
its fundamental role in wave-matter interactions, and also
due to the significance of possible applications[1]. While the
localization in one-dimensional(1D) random systems has
been studied in considerable detail, a quantitative analytical
description of the phenomenon in higher dimensions still
presents a challenge. The question here concerns the rela-
tionship between the localization and its characteristics(say,
localization length), on the one hand, and the correlation
properties of the scattering potential, on the other. However,
most of the existing results are related to ad-correlated po-
tential or obtained numerically by using discrete schemes,
such as the tight-binding model, and therefore are relevant
mainly for low-frequency excitations. Moreover, the theories
describing wave localization have been developed primarily
for systems with isotropic disorder, and those considering
anisotropy [2,3] are not directly applicable to classical
waves. The only exception is the limiting case of an infinite
correlation scale in one direction(randomly stratified media),
which has been studied rather comprehensively[4]. In such
media, the radiation is localized in the direction across the
layers and is typically channeled along the layers, similar to
that occurring in a regular waveguide. Although this model
can be useful for understanding the basic mechanisms of
wave localization in anisotropic systems, it is of little help
when media with finite anisotropy are concerned. Experi-
mental studies dealing with both electronic[5] and classical
wave [6,7] transport in anisotropic systems have been initi-
ated only recently and are far from being complete.

The present study is based on a path-integral approach[8]
that enables a perturbative analysis of the localization length
in random media with continuous-type disorder described by
an arbitrary correlation function. It is shown that in the long-
wavelength limit, a two-dimensional(2D) anisotropic system

is characterized by a finite localization length, which is in-
dependent of the direction of propagation. For shorter wave-
lengths, comparable to the correlation scale of the disorder,
the calculations demonstrate that waves should be exponen-
tially localized within some angular sectors centered at the
short axis of the correlation ellipse, and are extended in other
directions. The crossover from isotropic to anisotropic media
resembles a phase transition: for any given wave number
there is a frequency-dependent critical degree of anisotropy
below which the localization length is finite for all angles of
propagation. Above this critical value, one observes channel-
ing of the wave energy along the physically predetermined
directions.

We consider the radiation of a point source located at the
origin in an infinite statistically homogeneous medium which
is characterized by the relative permittivity distribution
«sRd=1+«̃sRd. The “scattering potential”«̃sRd is assumed
to be a zero-mean random perturbation with a given correla-
tion function B«sRd, whose Fourier transformation defines
the power spectrumF«sK d. Thus, at any pointR, the time-
harmonic wave field satisfies the Helmholtz equation

¹2GsRd + k2f1 + «̃sRdgGsRd = − dsRd, s1d

wherek=2p /l is the wave number in an unperturbed homo-
geneous medium.

The objective is to find the self-averaging(nonrandom)
value called inverse localization length(Lyapunov expo-
nent), which is defined as

j −1skd = − lim
L→`

L−1lnIsL,kd, s2d

where IsL ,kd;uGsRdu2 is the wave intensity measured at a
distanceL;uRu from the point source, andk =kR /R is the
wave vector directed along the line connecting the source
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with the observation point. The positiveness ofj −1skd means
that the wave intensity in typical realizations decays expo-
nentially, IsL ,kd,expf−L /jskdg, i.e., the radiation is local-
ized in thek direction. To calculate the Lyapunov exponent,
we use the following indirect procedure consisting of two
steps. We first evaluate the decrement of the mean intensity,

askd = − lim
L→`

L−1 lnkIsL,kdl, s3d

which, in general, does not coincide with the inverse local-
ization length, because, being obtained by averaging over the
ensemble of all possible realizations of the scattering poten-
tial, it is formed mainly by the contribution of low probable
realizations with high-Q resonances[9]. However, by evalu-
ating the decrementaskd in the second order of the scatter-
ing potential and presenting the result in the form of an in-
tegral expansion in theK space[see Eq.(6) below], we can
filter out the contribution of low probable resonances, and
therefore estimate the inverse localization length, the second
essential step in our calculations.

To realize this program, we use the method of proper time
[10], according to which the solution of Eq.(1) is given in
the form

GsRd =
i

2k
E

0

`

dt expsikt/2dgsR,td, s4d

where functiongsR ,td satisfies a Schrödinger-like equation,

2ik]tg + ¹2g + k2«̃sRdgsR,td = 0, t . 0, s5d

supplemented by an appropriate initial condition,gsR ,0d
=dsRd. By applying the path-integral solution to the propa-
gatorgsR ,td, the mean intensity of the wave is constructed
in the form allowing for the averaging to be easily per-
formed. Thet integrals are then evaluated by the method of
stationary phase, and the double path integral is replaced
with a first cumulant approximation, which in accordance
with Eq. (3) yields [11]

askd =
p

2
k3E dK fsk,K dF«sK d. s6d

Here,

fsk,K d = K−1dsK − u2k ·K /Kud − K−2qsK − u2k ·K /Kud,

s7d

dsxd is the Diracd function, andqsxd is the Heaviside step
function. It is important to note that Eqs.(6) and(7) are valid
for any power spectrumF«sK d and have the same general
form for random systems of any dimensionality. In deriving
Eq. (6), we have assumed that the distanceL is much larger
than any correlation scale of the disorder. This does not al-
low considering the crossover to a randomly layered me-
dium, where one of the correlation scales is obviously infi-
nite. However, this model is suitable for studying the
transition from isotropic random media to quasilayered struc-
tures in which one of the correlation scales is much greater
than other(s).

To extract the value ofj−1skd from Eq. (6), we have to

analyze first the basic mechanisms determining the interac-
tion of the wave field with different spectral components of
the scattering potential. To this end, let us recall the well
known perturbative result for the inverse localization length
in 1D systems[9]:

j −1skd =
p

2
k2F«s2kd. s8d

According to this expression, onlyK= ±2k components of
the spectrum contribute toj −1skd for a time-harmonic wave
with wave numberk, which means that the localization is
caused by the Bragg scattering on the corresponding periodic
lattice. As can be easily verified, Eq.(8) is reproduced ex-
actly, if we keep only ±2k Bragg components in Eq.(6)
written for the 1D case. The high-frequency tail,K.2k, of
the power spectrum does not contribute to the localization
length in weakly scattering media, but is related to the spikes
of wave intensity and enhanced transmission in resonant re-
alizations[12].

It is natural to extend this algorithm to higher-dimensional
(2D and 3D) media, where, according to the macroscopic
point of view [13], the localization appears as a result of a
subtle interplay between different periodic lattices, which
constitute any realization of a random medium. As is known,
in multidimensional systems the components of the power
spectrum(vectorsK of the reciprocal lattices) that partici-
pate in the Bragg scattering and, therefore, contribute to the
localization length, are located within the limiting circle(2D)
or sphere(3D) of radius 2k in the Ewald construction; see
Fig. 1 (in 1D, this diagram degenerates into three pointsK
=0, ±2k only) [8]. Hence, to estimate the value ofj −1skd in
higher dimensions in the same way as was done in the 1D
case, we should perform spectral filtering by reducing the

FIG. 1. Momentum diagram, representing schematically the pro-
cess of Bragg scattering in a weakly disordered medium. The points
of the Ewald circle determine all possible spectral components
(vectorsK =k8−k of the power spectrum) that could transform the
incident waveskd into a scattered onesk8d. The limiting circle
bounds all spectral components coupling any two wave vectors in
the process of elastic scattering.
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integration domain in Eq.(6) to the limiting sphereKø2k,
which results in

j −1skd =
p

2
k3E

Kø2k

dK fsk,K dF«sK d. s9d

The kernel of this integral transform, the functionfsk ,K d
given by Eq.(7) consists of two terms having opposite signs,
which means that in many-dimensional systems different
spectral components of the scattering potential control in
radically different ways the propagation of wave at typical
realizations. While the localization is favored by interaction
of the wave with spectral components lying on the curveK
= u2k ·K /Ku, wave scattering on lattices bounded by this
curve and the limiting circle(see Fig. 1) suppresses localiza-
tion and can even destroy it. Thus, the result of the compe-
tition between these two contributions and the exact answer
to the question whether the wave is localized or not is deter-
mined ultimately by the structure of the power spectrum.

In what follows we consider two-dimensional random
systems. If the disorder is isotropic, the integration over an-
gular coordinate in Eq.(9) can be performed analytically[8].
In the general case of an angle-dependent power spectrum
F«sK ,f8d, Eq. (9) can be presented in the form

j −1skd = pk3E
0

p

df8FF«s2kb,f8d −E
b

1

dxx−1F«s2kx,f8dG ,

s10d

whereb= ucossf−f8du, andf is the angle of propagation, so
thatk ;sk,fd. Note that the interval of integration overf8 is
reduced tof0,pg since bsf8+pd=bsf8d, and the power
spectrum is a periodic function in polar coordinates,
F«sK ,f8+pd=F«sK ,f8d.

To exemplify the result obtained, we have assumed that
the medium is described by an anisotropic Gaussian correla-
tion function,

B«sRd ; B«sx,yd = s«
2 exps− mx2/l«

2 − y2/ml«
2d, s11d

wheres«
2 is the variance of the fluctuations, whilel« andm

are, respectively, the mean geometrical value and the ratio of
the correlation lengths along the two coordinate axes. When,
for instance,m.1, the inhomogeneities are stretched along
the y axis. Since the two situationsm.1 andm,1 are to-
pologically equivalent, we consider only the casem.1,
which means thatf is the angle measured between the short
axis of the correlation ellipse and the direction of wave
propagation. The power spectrum corresponding to Eq.(11)
is given by

F«sK,f8d = s1/4pds«
2l«

2 exps− am
2 l«

2K2/4d, s12d

where

am
2 ; am

2sf8d = m sin2 f8 + s1/mdcos2 f8. s13d

By substituting the latter expressions into Eq.(10) we obtain

j −1skd =
1

8
s«

2k3l«
−1E

0

p

df8f2 exps− am
2k2b2d + E1sam

2k2d

− E1sam
2k2b2dg, s14d

where E1sxd is the exponential integral, andk=kl« is the
normalized wave number.

The inverse localization length in an isotropic systemsm
=1d as a function ofk is shown in Fig. 2. Althoughj −1skd
has a well-defined maximum at some intermediate frequency
band, in the high-frequency limit the localization length is
independent of the wavelength. The same effect has been
observed recently in numerical simulations[14] where the
localization length for 2D strongly disordered systems was
shown to saturate at high frequencies. While in Ref.[14] the
saturation was attributed to the discontinuous character of
the permittivity distribution, our consideration shows that
this effect can be of universal nature.

For anisotropic systems, in the long wavelength limit
mk2!1, Eq. (14) takes the form

j −1skd = sp/4ds1 − ln 2ds«
2k3l«

−1, s15d

which means thatj −1skd does not depend on the angle of
propagation under specified conditions, and the wave is lo-
calized in all directions as it is in isotropic media.

Anisotropy of the system shows up when the radiation
wavelength becomes comparable to the correlation scale of
the disorder; see Fig. 3. While atk=1/4 [Fig. 3(a)] radiation
is still localized in all directions for all values ofm used in
our calculations, for shorter wavelengths, already fork
=1/2 [Fig. 3(b)], a high degree of anisotropy causes the loss
of complete localization: at some criticalm-dependent angle
fc the inverse localization length turns to zero and there
appear angular sectors centered at the long axis of the corre-
lation ellipse, within which the wave is extended. Fork=1
[Fig. 3(c)], only weakly anisotropic mediasmø2d could lo-
calize waves in all directions. For increasing values ofk,
even a very moderate degree of anisotropy destroys complete
localization. Moreover, as can be seen from the plots corre-

FIG. 2. Inverse localization lengthj −1skd as a function of the
normalized wave numberk=kl« for 2D statistically isotropic me-
dium with Gaussian correlation function. The localization length is
normalized tos«

2 and is given in units ofl«.
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sponding tok=2 [Fig. 3(d)] and, especially,k=4 [Fig. 3(e)],
the dependence of the localization length on the angle of
propagation becomes more complicated: a unimodal angular
structure typical of smallk values transforms into a bimodal
distribution. In other words, the maximum of the inverse
localization length(the strongest localization) is observed
not for waves propagating in the transverse direction, i.e.,
along thef=0 axis, as one could expect, but at some inter-
mediate angles0,f,fcd, which depends on bothk andm.

This, at first glance counterintuitive, behavior of the lo-

calization length can be understood if we recall that the same
physical mechanism, namely, scattering on the resonant
Bragg lattices, underlies not only band gap formation in pe-
riodic systems, but also wave localization in random media.
There exist a number of examples, in particular, in two di-
mensions, which show a complete stop band only above
some critical value of the refractive index contrast between
the constituent dielectrics forming a photonic crystal. For
smaller contrasts, the wave can freely escape the photonic
trap, being channeled within some angular sectors defined

FIG. 3. Inverse localization lengthj −1skd as a function of the angle of propagationf for 2D statistically anisotropic media, with different
values of the anisotropy parameter:m=2 (dotted line), m=4 (dash-dotted line), m=8 (dashed line), m=16 (solid line). Straight dashed line
corresponds to the isotropic case. The localization length is normalized tos«

2 and is given in units ofl«. Each of the five plots corresponds
to a given value of the normalized wave numberk=kl«: (a) k=1/4; (b) k=1/2; (c) k=1; (d) k=2; (e) k=4.
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by the structure[15]. Since there is a parallel between the
band-gap phenomena in photonic crystals, on the one hand,
and our treatment of classical wave localization in random
media, on the other, it is of little surprise that the anisotropy
in correlations of the scattering potential leads to similar ef-
fects. Also, one can find an interesting analogy with the
angle-resolved picture of wave transport through 3D disor-
dered photonic crystals, where at some frequencies a bi-
modal angular distribution of the radiation has been observed
[16].

In summary, the localization of classical waves in 2D ran-
dom media with anisotropic disorder has been considered.
The physical analysis is based on a formula that generalizes
the well known 1D Bragg scheme to multidimensional sys-
tems. It is shown that, in contrast to the low-frequency re-
gime where the radiation is localized in all directions, for
shorter wavelengths wave transport becomes highly aniso-
tropic. The important prediction is that complete localization

may be absent in 2D anisotropic systems when the wave-
length is comparable to the correlation scales of the disorder.
A similar analysis based on Eq.(9) can be performed also for
3D anisotropic media. The predicted effect of anisotropy on
wave transport in random media may find applications in
photonics and other related technologies. For instance, in
many cases the degree of anisotropy can be controlled much
more easily than the refractive index contrast[17]. The de-
pendence ofj −1skd on the anisotropy opens, therefore, a way
to control localization in disordered systems. In particular,
such effects may be used in random lasers[18] where the
possibility of changing the shape of lasing modes and, hence,
their quality factor and lasing threshold, adds considerably to
the technique.
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